Thermodynamics of Solute Transfer from Water to Hexadecane

Michael H. Abraham ${ }^{\circ}$ and Gary S. Whiting
Chemistry Department, University College London, 20 Gordon St., London WC1H OAJ Richard Fuchs * and Eric J. Chambers
Department of Chemistry, University of Houston, Houston, Texas 77204-5641, USA

New measurements of enthalpies of solution in hexadecane and in water $\left(\Delta H_{\mathrm{s}}^{\circ}\right)$, and gashexadecane Ostwald solubility coefficients $\left(L_{H}\right)$ of neutral monomeric organic solutes are reported. These values, together with literature values of $\Delta H_{s^{\prime}}^{\circ} L_{H}$, and gas-water Ostwald solubility coefficients $\left(L_{w}\right)$, have been used to derive the Gibbs energies, enthalpies, and entropies of solute transfer from water to hexadecane ($\Delta G_{\mathrm{tr},}^{\circ}, \Delta H_{\mathrm{tr}}^{\circ}$, and $\Delta S_{\mathrm{tr}}^{\circ}$), as well as water-hexadecane partition coefficients (as $\log P_{\mathrm{H}}$). Results have been examined by the method of multiple linear regression analysis, using the equation,

$$
\mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}+b \beta_{2}+v V_{2}
$$

The $s \pi_{2}^{*}$ term is difficult to interpret, but the $a \alpha_{2}$ and $b \beta_{2}$ terms can be shown to arise through hydrogen bonding of solute molecules to the bulk water that is exothermic but rather disfavoured entropically. It is shown also that the $v V_{2}$ term arises due to a combination of cavity effects and general dispersion interactions in bulk water and bulk hexadecane.

The use of water-octanol partition coefficients is widespread in medicinal and pharmaceutical chemistry, and, indeed, forms part of the general rationale governing most quantitative structure-activity relationships (QSARs). ${ }^{1}$ Although watersaturated octanol, according to this rationale, is a suitable model for biological membranes, other solvents, and hence other water-solvent partition coefficients, have also been used in QSARs. For example, Finkelstein ${ }^{2}$ and, later, Franks and Lieb ${ }^{3}$ used water-hexadecane partition coefficients, the latter workers specifically to test for hydrophobic binding sites in the luciferase enzyme. In these studies the required waterhexadecane partition coefficients were obtained by the traditional 'shake-flask' method. Unlike the water-octanol system, in which the mutual miscibility of the two solvents is quite high, the water-hexadecane system can be regarded as a system containing the two pure solvents (the solubility of water in hexadecane is $2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ and that of hexadecane in water is $\left.4 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}\right) .^{4}$ Hence water-hexadecane partition coefficients can be determined indirectly using equation (1), where L_{W} and L_{H} are the respective gas-solvent

$$
\begin{equation*}
P_{\mathrm{H}}=L_{\mathbf{H}} / L_{\mathrm{W}} \tag{1}
\end{equation*}
$$

Ostwald solubility coefficients. \dagger We, ${ }^{4}$ and Shantz and Martire, ${ }^{5}$ have shown almost simultaneously that values of P_{H} obtained indirectly via equation (1) are, indeed, identical with values determined by the direct 'shake-flask' method. Since the values of L_{H} can be measured very accurately by a gas-chromatographic method using hexadecane as the stationary phase, ${ }^{4,5}$ it is possible from known aqueous solubilities of gases ${ }^{6-10}$ to obtain P_{H} values relatively simply for a wide range of not-too-involatile solutes.

One of the aims of the present work is to set out values of P_{H} for the water-hexadecane partition of neutral, monomeric solutes, either as $\log P_{\mathrm{H}}$ or as transfer Gibbs energies, $\Delta G_{\mathrm{tr}}^{\circ}$, for as wide a range of solutes as possible. The second aim is to present values for the enthalpy, and hence, the entropy, of transfer of examples of these solutes. To date, there have been very few sets of $\Delta G_{\mathrm{tr}}^{\circ}, \Delta H_{\mathrm{tr}}^{\circ}$, and $\Delta S_{\mathrm{tr}}^{\circ}$ values for partition from
water to a given solvent. The most substantial set of data is that of Riebesehl and Tomlinson, ${ }^{11}$ who used a direct flow-microcalorimeter method to obtain $\Delta H_{\mathrm{tr}}^{\circ}$ values for transfer of 29 solutes from water to $2,2,4$-trimethylpentane. We later analysed the thermodynamic results of Tomlinson and co-workers, ${ }^{1,12}$ but found ${ }^{13}$ that the data were not extensive enough to examine aliphatic and aromatic solutes separately. We have therefore obtained $\Delta H_{\mathrm{tr}}^{\circ}$ values through a combination of enthalpies of solution in water and in hexadecane separately, and set out $\Delta G_{\mathrm{rr}}^{\circ}, \Delta H_{\mathrm{tr}}^{\circ}$, and $\Delta S_{\mathrm{tr}}^{\circ}$ values for as many solutes as possible. We have, as well as our own calorimetrically determined ΔH_{s}° values, used literature data on $\Delta H_{\mathrm{s}}^{\circ}$ values in water and hexadecane, where possible, selecting calorimetrically determined values. Of course, for solutes that are gaseous at room temperature and pressure, $\Delta H_{\mathrm{s}}^{\circ}$ values have nearly always been obtained through the temperature variation of solubility-the so called van't Hoff method-but the method of direct calorimetry is to be preferred.

Experimental

Values of L_{H} for solutes on hexadecane at 298.15 K were obtained as described before. ${ }^{4}$ The instruments used were either a Pye-Unicam 104 chromatograph fitted with a katharometer detector, for the determination of absolute L_{H} values, or a Perkin-Elmer F-11 chromatograph fitted with a flame detector, for the determination of relative L_{H} values to be converted into absolute values.

Enthalpies of solution in hexadecane and in water were measured as described previously, ${ }^{14}$ with liquid solute samples of 10,20 , or $50 \mathrm{~mm}^{3}$ injected through Teflon-faced silicone septa into vapour-tight, vacuum-jacketed solution calorimeters containing $80-110 \mathrm{~cm}^{3}$ of solvent. For solutes which dissolve slowly the normal stirring speed of 300 rpm was increased to 600 rpm . Solutes and solvents, all of $>99 \%$ purity, were dried with 4A molecular sieve, with the ex-

[^0]Table 1. Thermodynamics of transfer of solutes from water to hexadecane, and calculation of $\Delta G_{\mathrm{tr}}^{\circ}$ (mole fraction scale) and log P_{H} (molar scale) for water to hexadecane at 298 K .

Solute	Water ${ }^{\text {a }}$		Hexadecane ${ }^{\text {b }}$		Water \longrightarrow Hexadecane			$\log L_{\text {w }}$	$\log L_{\mathrm{H}}$	$\log P_{\mathrm{H}}$
	$\Delta G_{\mathrm{s}}^{\circ}$	$\Delta H_{\mathrm{s}}{ }^{\circ}$	$\Delta G_{\text {s }}{ }^{\circ}$	$\Delta H_{\mathrm{s}}{ }^{\circ}$	$\Delta G_{\text {ir }}^{\circ}$	$\Delta H_{\text {tr }}^{\circ}$	$\Delta S_{\text {tr }}^{\circ}$			
Helium	7.03	-0.16	4.99	$1.97{ }^{\text {c }}$	-2.04	2.13	14.0	-2.023	-1.741	0.28
Neon	6.94	-0.92	4.77	$1.62{ }^{\text {c }}$	-2.17	2.54	15.8	-1.958	-1.575	0.38
Argon	6.27	-2.93	3.56	$-0.19{ }^{\text {c }}$	-2.71	2.74	18.3	-1.467	-0.688	0.78
Krypton	5.93	-3.74	2.91	-1.20^{c}	-3.02	2.54	18.6	-1.213	-0.211	1.00
Xenon	5.60	-4.63	2.10	$-2.41^{\text {c }}$	-3.50	2.22	19.2	-0.972	0.378	1.35
Radon	5.15	-5.74	1.42	-3.39^{c}	-3.73	2.35	20.4	-0.646	0.877	1.52
Methane	6.27	-3.15	3.06	$-0.95^{\text {c }}$	-3.21	2.20	18.1	-1.452	-0.323	1.14
Ethane	6.09	-4.66	1.95	$-2.75{ }^{\text {c }}$	-4.14	1.91	20.3	-1.336	0.492	1.83
Propane	6.23	-5.56	1.19	$-3.81{ }^{\text {c }}$	- 5.04	1.75	22.8	-1.436	1.050	2.49
Butane	6.34	-6.20	0.42	-4.97°	-5.92	1.23	24.0	-1.518	1.615	3.13
2-Methylpropane	6.59	$-5.78{ }^{\text {d }}$	0.70	$-4.48{ }^{\text {c }}$	- 5.89	1.30	24.1	-1.70	1.409	3.11
Pentane	6.60	-6.76	-0.33	-6.20	-6.93	0.56	25.1	-1.704	2.162	3.87
Hexane	6.76	-7.65	-1.02	-7.42	-7.78	0.23	26.9	-1.821	2.668	4.49
Heptane	6.95	-8.13	-1.71	-8.64	-8.66	-0.51	27.3	-1.962	3.173	5.14
Octane	7.15	-8.60	-2.40	-9.83	-9.55	-1.23	27.9	-2.109	3.677	5.79
Cyclopropane	5.02	$-5.56{ }^{d}$	0.83		-4.19			-0.55	1.314	1.86
Cyclopentane	5.48	-7.25	-0.72	$-6.61{ }^{e}$	-6.20	0.64	22.9	-0.88	2.447	3.33
Cyclohexane	5.50	$-7.84{ }^{\text {d }}$	-1.35	$-7.53{ }^{e}$	-6.85	0.31	24.0	-0.90	2.913	3.81
2,2-Dimethylpropane ${ }^{\delta}$	6.78		0.14		-6.64			-1.84	1.82	3.66
3,3-Diethylpentane ${ }^{\delta}$	6.50		-2.59		-9.09			-1.63	3.82	5.45
Tetramethylsilane ${ }^{f}$	7.32		-0.30		-7.62			-2.23	2.14	4.37
Tetraethylsilane ${ }^{f}$	7.04		-3.24		-10.33			-2.03	4.33	6.36
Tetramethyltin ${ }^{S}$	6.48		-1.36		-7.84			-1.62	2.92	4.54
Tetraethyltin ${ }^{f}$	6.75		-4.31		-11.06			-1.82	5.08	6.90
Ethene	5.55	$-3.93{ }^{\text {d }}$	2.23	-2.67^{9}	-3.32	1.26	15.4	-0.94	0.289	1.23
Propene	5.59	$-5.17{ }^{\text {d }}$	1.33	$-3.19^{\text {h }}$	-4.26	1.98	20.9	-0.97	0.946	1.92
But-1-ene	5.65	$-5.77{ }^{\text {d }}$	0.59		-5.06			-1.01	1.491	2.50
Pent-1-ene	5.94		-0.13		-6.07			-1.23	2.013	3.24
Hex-1-ene	5.85		-0.86		-6.71			-1.16	2.547	3.71
Hept-1-ene	5.93		-1.56		-7.49			-1.22	3.063	4.28
Oct-1-ene	6.19		-2.28		-8.47			-1.41	3.591	5.00
Non-1-ene	6.33		-2.84		-9.17			-1.51	4.00	5.51
Ethyne	4.26	$-3.49{ }^{\text {d }}$	2.41	$1.67{ }^{\text {i }}$	-1.85	5.16	23.5	0.01	0.150	0.14
Propyne	3.79	$-3.73{ }^{j}$	1.22		-2.57			0.35	1.025	0.68
But-1-yne	4.11	$-3.71{ }^{j}$	0.55		-3.56			0.12	1.52	1.40
Pent-1-yne	4.29		-0.12		-4.41			-0.01	2.01	2.02
Hex-1-yne	4.56		-0.80		-5.36			-0.21	2.51	2.72
Hept-1-yne	4.87		-1.47		-6.34			-0.44	3.00	3.44
Oct-1-yne	4.98		-2.13		-7.11			-0.52	3.48	4.00
Non-1-yne	5.32		-2.78		-8.10			-0.77	3.96	4.73
Benzene	3.39	-7.59	-1.20	-7.26	-4.59	0.33	16.5	0.65	2.803	2.15
Toluene	3.48	-8.67	-1.94	-8.58	-5.42	0.09	18.3	0.58	3.344	2.76
Ethylbenzene	3.61	-9.62	-2.52	-9.59	-6.13	0.03	20.7	0.48	3.765	3.28
Propylbenzene	3.75	-10.50	-3.14	-10.55	-6.89	-0.05	22.9	0.38	4.221	3.84
Butylbenzene	3.91	-10.55^{m}	-3.17		-7.68			0.27	4.686	4.42
Pentylbenzene	4.04	-11.82^{m}	-4.41		-8.45			0.17	5.152	4.98
Hexylbenzene	4.23	-12.60^{m}	-5.04		-9.27			0.03	5.617	5.59
o-Xylene	$3.36{ }^{\text {k }}$	-9.01^{n}	-2.75		-6.11			0.67	3.937	3.27
m-Xylene	$3.56{ }^{\prime}$	$-9.37{ }^{n}$	-2.65	-9.89	-6.21	-0.52	19.2	0.52	3.864	3.34
p-Xylene	$3.54{ }^{k, l}$	-9.49^{n}	-2.64	-9.92	-6.18	-0.43	19.3	0.54	3.858	3.32
1,2,3-Trimethylbenzene	$3.30{ }^{k, l}$	$-8.96{ }^{n}$						0.71		
1,2,4-Trimethylbenzene	$3.47^{k, l}$	$-9.54{ }^{n}$						0.59		
1,3,5-Trimethylbenzene	3.59^{k}	$-9.36{ }^{n}$	-3.38	-11.13	-6.97	-1.77	17.4	0.50	4.399	3.90
Isopropylbenzene	$3.81^{k, l}$	$-9.46{ }^{n}$	-2.98		-6.79			0.34	4.105	3.77
Naphthalene	$1.87^{k, o}$	-11.20°	-4.67		-6.54			1.76	5.34	3.58
Fluorene	0.92^{k}							2.46		
Phenanthrene	0.41							2.83		
Pyrene	-0.30							3.35		
Propanone	0.46	-9.90^{p}	0.22	-5.14	-0.24	4.76	16.8	2.79	1.760	-1.03
Butanone	0.56	-10.91^{p}	-0.50	-6.33	-1.06	4.58	18.9	2.72	2.287	-0.43
Pentan-2-one	0.75	-11.63^{p}	-1.14	-7.42	-1.89	4.21	20.5	2.58	2.755	0.18
Hexan-2-one	0.98	-12.57^{p}	-1.83	$-8.55^{\text {a }}$	-2.81	4.02	22.9	2.41	3.262	0.85
Heptan-2-one	1.23	-13.43^{p}	-2.51	-9.67	-3.74	3.76	25.1	2.23	3.760	1.53
Octan-2-one	1.39	-14.15^{q}	-3.19	-10.73^{9}	-4.58	3.42^{q}	26.8	2.11	4.257	2.15
Nonan-2-one	1.78	-14.90^{j}	-3.87	-11.80^{9}	-5.65	3.10^{q}	29.3	1.83	4.755	2.92
Decan-2-one	1.92		-4.56		-6.48			1.72	5.260	3.54
Undecan-2-one	2.11		-5.24		-7.35			1.58	5.760	4.18
Pentan-3-one	$0.86{ }^{j}$	-11.82^{j}	-1.22		-2.08			2.50	2.811	0.31

Table 1 (continued)

Solute	Water ${ }^{\text {a }}$		Hexadecane ${ }^{\text {b }}$		Water \longrightarrow Hexadecane			$\log L_{\text {w }}$	$\log L_{\mathrm{H}}$	$\log P_{\mathrm{H}}$
	$\Delta G_{\text {s }}{ }^{\circ}$	ΔH_{s}°	$\Delta G_{\text {s }}{ }^{\circ}$	$\Delta H_{\text {s }}{ }^{\circ}$	$\Delta G_{\text {Ir }}^{\circ}$	$\Delta H_{\text {Ir }}{ }^{\circ}$	$\Delta S_{\text {tr }}^{\circ}$			
Heptan-4-one	$1.35{ }^{j}$	-14.40^{j}	-2.59		-3.94			2.14	3.820	1.68
Nonan-5-one	$1.63{ }^{j}$	-16.04	-3.71		-5.34			1.94	4.64	2.70
3-Methylbutan-2-one	$1.03{ }^{j}$		-1.01		-2.04			2.38	2.66	0.28
4-Methylpentan-2-one	$1.21{ }^{j}$		-1.54		-2.75			2.24	3.05	0.81
Cyclopentanone	$-0.43{ }^{\text {r }}$	-12.36	-1.64		-1.21			3.45	3.120	-0.33
Cyclohexanone	$-0.64{ }^{\text {s }}$	$-12.90^{\text {t }}$	-2.31	-8.72	-1.67	4.18	19.6	3.60	3.616	0.02
Acetophenone	$-0.31{ }^{j}$	$-12.64{ }^{\text { }}$	-3.50	-11.32	-3.19	1.32	15.1	3.36	4.483	1.12
Formaldehyde	$1.52{ }^{\text {" }}$		1.62		0.10			2.02	0.73	-1.29
Acetaldehyde	$0.77{ }^{\circ}$		0.94		0.17			2.57	1.230	-1.34
Propanal	$0.83{ }^{\circ}$		0.14		-0.69			2.52	1.815	-0.70
Butanal	$1.09{ }^{\circ}$		-0.48		-1.57			2.33	2.270	-0.06
Pentanal	$1.24{ }^{\nu}$		-1.16		-2.40			2.22	2.770	0.55
Hexanal	$1.46{ }^{\circ}$		-1.98		-3.44			2.06	3.370	1.31
Heptanal	$1.60{ }^{\circ}$		-2.65		-4.25			1.96	3.86	1.90
Octanal	$1.98{ }^{\text {b }}$		-3.35		-5.33			1.68	4.38	2.70
Nonanal	$2.20{ }^{\text {b }}$		-4.07		-6.27			1.52	4.90	3.38
2-Methylpropanal	$1.41{ }^{\text {w }}$		-0.19		-1.60			2.10	2.06	-0.04
Benzaldehyde	$0.25{ }^{j}$	$-10.79^{\text {t }}$	-2.82	-9.84	-3.07	0.95	13.5	2.95	3.985	1.03
(E)-But-2-enal	$0.05{ }^{j}$		-0.89		-0.94			3.10	2.57	-0.53
Dimethyl ether	$2.38{ }^{j}$		1.33					1.39	1.09	-0.30
Diethyl ether	$2.68{ }^{j}$	-11.20^{t}	-0.19	-6.02	-2.87	5.18	27.0	1.17	2.061	0.89
Dipropyl ether	3.11^{j}		-1.46		-4.57			0.85	2.989	2.14
Di-isopropyl ether	$3.74{ }^{\text {x }}$		-0.87		-4.61			0.39	2.559	2.17
Dibutyl ether	$3.44{ }^{\text {x }}$		-2.84		-6.28			0.61	4.001	3.39
Tetrahydrofuran	$0.80{ }^{j}$	-11.31^{\prime}	-0.84	-6.82	-1.64	4.49	20.6	2.55	2.534	-0.02
Tetrahydropyran	$1.15{ }^{j}$	$-11.68{ }^{j}$	-1.46					2.29	2.99	0.70
Anisole	$1.82{ }^{\text {y }}$	$-9.90^{\text {t }}$	-2.74	-9.90	-4.56	0.00	15.3	1.80	3.926	2.13
Phenetole	$2.05{ }^{\nu}$		-3.03		-5.08			1.63	4.14	2.51
Methyl formate	1.49		0.63		-0.86			2.04	1.459	-0.58
Methyl acetate	1.13	$\begin{array}{r} -9.44^{i} \\ -10.16^{j} \end{array}$	-0.05		-1.18			2.30	1.960	-0.34
Methyl propanoate	1.34		-0.74		-2.08			2.15	2.459	0.31
Methyl butanoate	1.44	$-11.50{ }^{j}$	-1.40		-2.84			2.08	2.943	0.86
Methyl pentanoate	1.70	-12.33^{j}	-2.08		-3.78			1.88	3.442	1.56
Methyl hexanoate	1.78		-2.81		-4.59			1.83	3.984	2.15
Ethyl formate	1.70		0.03		-1.67			1.88	1.901	0.02
Ethyl acetate	1.33	$-10.78{ }^{\text {t }}$	-0.62	-6.69	-1.95	4.09	20.3	2.16	2.376	0.22
Ethyl propanoate	1.59		-1.31		-2.90			1.97	2.881	0.91
Ethyl butanoate	1.77		-1.99		-3.76			1.83	3.379	1.55
Ethyl pentanoate	1.77							1.83		
Ethyl hexanoate	2.03							1.64		
Ethyl heptanoate	1.95							1.70		
Propyl formate	$1.79{ }^{\text {x }}$		-0.67		-2.46			1.82	2.413	0.59
Propyl acetate	1.48		-1.31		-2.79			2.05	2.878	0.83
Propyl propanoate	1.83		-1.98		-3.81			1.79	3.370	1.58
Propyl butanoate	$1.99{ }^{\text {x }}$		-2.58		-4.57			1.67	3.81	2.14
Butyl acetate	1.63	-12.36^{\prime}	-1.99	-9.20	-3.62	3.16	22.7	1.94	3.379	1.44
Pentyl acetate	1.76		-2.58		-4.34			1.84	3.81	1.97
Pentyl propanoate	2.16		-3.32		-5.60			1.55	4.350	2.80
Hexyl acetate	$2.01{ }^{x}$		-3.21		-5.22			1.66	4.27	2.61
Isopropyl formate	$2.25{ }^{x}$		-0.42		-2.67			1.48	2.23	0.75
Isopropyl acetate	$1.63{ }^{x}$		-0.97		-2.60			1.94	2.633	0.69
Isopropyl propanoate	$2.05{ }^{\text {x }}$		-1.51		-3.56			1.63	3.03	1.40
Isobutyl formate ${ }^{z}$	$2.05{ }^{\text {x }}$		-1.24		-3.29			1.63	2.83	1.20
Isobutyl acetate ${ }^{z}$	$1.91{ }^{\text {x }}$		-1.72		-3.63			1.73	3.180	1.45
Isoamyl formate ${ }^{2}$	$2.14{ }^{x}$		-1.95		-4.09			1.56	3.35	1.79
Isoamyl acetate ${ }^{2}$	$2.06{ }^{x}$		-2.48		-4.54			1.62	3.74	2.12
Isobutyl isobutyrate ${ }^{\text {z }}$	$2.59{ }^{\text {w }}$		-2.67		-5.25			1.24	3.88	2.64
Methyl benzoate	-0.01^{x}	$-12.44^{\text {t }}$	-3.70	-11.56	-3.69	0.88	15.3	3.14	4.634	1.49
Ethyl benzoate	$0.63{ }^{y}$							2.67		
Propylene carbonate	$-3.29^{a a}$	$0.39{ }^{\text {ab }}$						5.54		
Water	$-2.05^{\text {ac }}$	$-10.51{ }^{\text {ac }}$	$2.26{ }^{\text {ad }}$	$-8.44^{a e}$	4.31	2.07	-7.5	4.64	0.260	-4.38
Methanol	-0.83	-10.78^{p}	1.36	-3.19	2.19	7.59	18.1	3.74	0.922	-2.82
Ethanol	-0.73	$-12.58{ }^{\circ}$	0.59	-3.90	1.32	8.68	24.7	3.67	1.485	-2.19
Propan-1-ol	-0.58	-13.77^{p}	-0.24	-5.06	0.34	8.71	28.1	3.56	2.097	-1.46
Butan-1-ol	-0.45	-14.75^{p}	-0.93	-6.71	-0.48	8.04	28.6	3.46	2.601	-0.86
Pentan-1-ol	-0.30	-15.48 ${ }^{\text {p }}$	-1.62	- 7.46	-1.32	8.02	31.3	3.35	3.106	-0.24
Hexan-1-ol	-0.14	-16.28^{p}	-2.31	-9.51	-2.17	6.77	30.0	3.23	3.610	0.38
Heptan-1-ol	0.06	-17.24^{p}	-2.99	-10.62^{9}	-3.05	6.62	32.4	3.09	4.115	1.02

Table 1 (continued)

Solute	Water ${ }^{\text {a }}$		Hexadecane ${ }^{\text {b }}$		Water \longrightarrow Hexadecane			$\log L_{\text {w }}$	$\log L_{\text {H }}$	$\log P_{\text {H }}$
	$\Delta G_{\mathrm{s}}^{\circ}$	$\Delta H_{\text {s }}{ }^{\circ}$	$\Delta G_{\mathrm{s}}^{\circ}$	$\Delta H_{\text {s }}{ }^{\circ}$	$\Delta G_{\text {Ir }}^{\circ}$	$\Delta H_{\text {rr }}^{\circ}$	$\Delta S_{\text {tr }}^{\circ}$			
Octan-1-ol	0.18	-17.72^{p}	-3.68	-11.73	-3.86	5.99	33.0	3.00	4.619	1.62
Nonan-1-ol	0.39		-4.37		-4.76			2.85	5.124	2.27
Decan-1-ol	0.63		-5.06		-5.69			2.67	5.628	2.96
Propan-2-ol	$-0.48^{\text {as }}$	$-14.05^{\text {t }}$	0.14	-5.35	0.62	8.70	27.1	3.48	1.821	-1.66
Butan-2-ol	$-0.35^{\text {as }}$	-15.00 ${ }^{\text {j }}$	-0.57		-0.22			3.39	2.338	-1.05
2-Methylpropan-1-ol	$-0.23{ }^{\text {as }}$	-14.38 ${ }^{\text {j }}$	-0.65		-0.42			3.30	2.339	-0.90
2-Methylpropan-2-ol	$-0.20^{\text {aj }}$	$-15.39^{\text {f }}$	-0.13	-5.50	0.07	9.89	32.9	3.28	2.018	-1.26
Pentan-2-ol	-0.12^{x}		-1.26		-1.14			3.22	2.840	-0.38
2-Methylbutan-1-ol	-0.15^{x}		-1.49		-1.34			3.24	3.011	-0.23
2-Methylbutan-2-ol	-0.16^{x}	$-16.44{ }^{\text {ag }}$	-0.97		-0.86			3.25	2.630	-0.62
Pentan-3-ol	$-0.08{ }^{j}$	-15.77^{j}						3.19		
3-Methylbutan-1-ol	-0.15^{j}		-1.49					3.24	3.011	-0.23
Hexan-3-ol	$0.20{ }^{j}$	-16.63^{j}	-2.07					2.98	3.440	0.46
4-Methylpentan-2-ol	$0.53{ }^{x}$							2.74		
2-Methylpentan-2-ol	$0.34{ }^{\text {x }}$		-1.72					2.88	3.181	0.30
2-Methylpentan-3-ol	$0.38{ }^{\text {x }}$							2.85		
Cyclopentanol	-1.22^{j}	-15.98^{j}	-1.84		-0.62			4.03	3.270	-0.76
Cyclohexanol	-1.20^{j}	-16.85 ${ }^{j}$	-2.39		-1.19			4.01	3.671	-0.34
Cycloheptanol	$-1.21{ }^{j}$	-17.82^{j}						4.02	3.671	-0.34
Allyl alcohol	-0.76^{x}		-0.10		0.66			3.69	1.996	-1.69
2,2,2-Trifluoroethanol	$-0.03{ }^{j}$	$-12.01{ }^{\text {t }}$	0.95	-4.99	0.98	7.02	20.3	3.15	1.224	-1.93
Hexafluoropropan-2-ol	$0.51{ }^{j}$	-13.65^{j}	0.72	-5.28	0.21	8.37	27.4	2.76	1.392	-1.37
Benzyl alcohol	$-2.07{ }^{\text {y }}$	-16.00^{\prime}	-3.44	-10.13	-1.37	5.87	24.3	4.65	4.443	-0.21
Phenol	$-2.00^{\text {ah }}$	$-13.65^{a i}$	-2.64		-0.64			4.60	3.856	-0.74
o-Cresol	$-1.60{ }^{a i}$	$-14.52^{a i}$	-3.17		-1.57			4.30	4.242	-0.06
m-Cresol	$-1.23{ }^{\text {aj }}$		-3.29		-2.06			4.03	4.329	0.30
p-Cresol	$-1.86{ }^{\text {a }}$	$-14.29^{\text {ai }}$	-3.26		-1.40			4.50	4.307	-0.19
4-t-Butylphenol	$-1.65{ }^{a i}$	-15.25 ${ }^{\text {ai }}$						4.34		
4-Bromophenol	$-2.86{ }^{\text {ai }}$	$-16.27^{\text {ai }}$						5.23		
2-Nitrophenol	$-0.15{ }^{\text {ak }}$	$-11.47{ }^{\text {ak }}$	-3.77		-3.62			3.24	4.684	1.44
3-Nitrophenol	$-5.36{ }^{j}$	-16.18 ${ }^{\text {j }}$						7.06		
4-Nitrophenol	$-6.38{ }^{\text {ai }}$	$\begin{aligned} & -18.04^{a i} \\ & -16.40^{j} \end{aligned}$						7.81		
3-Cyanophenol	$-5.24{ }^{\text {j }}$	-16.90^{j}						6.97		
4-Cyanophenol	-5.90^{j}	-16.80^{j}						7.46		
3-Hydroxybenzaldehyde	$-5.24{ }^{j}$	-16.00^{j}						6.97		
4-Hydroxybenzaldehyde	-6.20^{j}	-16.30^{j}						7.68		
2-Chlorophenol									4.937	
3-Chlorophenol		-12.03^{j}								
4-Chlorophenol		-8.58^{j}								
Formic acid		-11.09								
Acetic acid	$-2.43^{a l}$	-12.28	0.23		2.66			4.91	1.75	-3.16
Propanoic acid	$-2.20{ }^{\text {al }}$	-13.45	-0.50		1.70			4.74	2.29	-2.45
Butanoic acid	$-2.08^{a l}$	-14.50	-1.24		0.84			4.66	2.83	-1.83
Pentanoic acid	$-1.90{ }^{\text {am }}$	-15.32	-1.99		-0.09			4.52	3.38	-1.14
Hexanoic acid	$-1.95{ }^{\text {an }}$	-16.08	-2.72		-0.77			4.56	3.92	-0.64
Heptanoic acid	$-1.89{ }^{\text {an }}$	-16.96	-3.47		-1.58			4.52	4.46	-0.06
Octanoic acid	$-1.78{ }^{\text {a }}$	-17.75	-4.20		-2.42			4.44	5.00	0.56
3-Methylbutanoic acid	$-1.82{ }^{\text {w }}$		-1.88		-0.06			4.47	3.30	-1.17
Ammonia	$-0.03^{a o}$	$-8.42^{a o}$	2.25		2.28			3.15	0.269	-2.88
Methylamine	-0.29	-10.82						3.34		
Ethylamine	-0.23	- 12.83	0.33		0.56			3.30	1.677	-1.62
Propylamine	-0.12	-13.38	-0.30	-5.73	-0.18	7.65	26.3	3.22	2.141	-1.08
Butylamine	0.03	-14.15	-0.95	-7.03	-0.98	7.12	27.2	3.11	2.618	-0.49
Pentylamine	0.18	-14.85	-1.59		-1.77			3.00	3.086	0.09
Hexylamine	0.32	-15.76	-2.23	-9.43	-2.55	6.33	29.8	2.90	3.557	0.66
Heptylamine	0.48		-2.91		-3.39			2.78	4.050	1.27
Octylamine	0.62		-3.55		-4.17			2.68	4.520	1.84
Isopropylamine		$-13.37^{\text {ao }}$								
t-Butylamine		$-14.16^{a o}$	-0.78	-6.25		7.91			2.493	
Cyclohex ylamine	$-0.32^{\text {w }}$							3.37		
Dimethylamine	$-0.03^{\text {ao }}$	$-12.69{ }^{\text {ao }}$	0.44		0.47			3.15	$1.60{ }^{\text {a }}$	-1.55
Diethylamine	$0.19^{\text {ao }}$	-15.37°	-0.65	-5.88	-0.84	9.49	34.6	2.99	2.395	-0.60
Dipropylamine	$0.62{ }^{\text {ao }}$	-17.26ao	-1.98		-2.60			2.68	3.372	0.69
Dibutylamine	$1.03{ }^{\text {ao }}$	$-18.89^{a o}$						2.38		
Di-isopropylamine	$1.06{ }^{\text {ao }}$	$-16.81{ }^{\text {ao }}$	-1.33		-2.39			2.36	2.893	0.53
Trimethylamine	$1.03{ }^{\text {ao }}$	$-12.60{ }^{\text {ao }}$	0.41		-0.62			2.35	1.620	-0.73
Triethylamine	$1.05{ }^{\text {ap }}$	$-16.64{ }^{\text {ap }}$	-1.58	-8.16	-1.58	8.48	33.7	2.36	3.077	0.72
Aniline	$-1.23{ }^{y}$	-12.87	-2.83	-9.99	-1.60	2.88	15.0	4.03	3.993	-0.04

Table 1 (continued)

Solute	Water ${ }^{\text {a }}$		Hexadecane ${ }^{\text {b }}$		Water \longrightarrow Hexadecane			$\log L_{\text {w }}$	$\log L_{\mathrm{H}}$	$\log P_{\mathrm{H}}$
	$\Delta G_{\text {s }}$ 。	$\Delta H_{\mathrm{s}}{ }^{\circ}$	$\Delta G_{\text {s }}{ }^{\circ}$	$\Delta H_{\mathrm{s}}{ }^{\circ}$	$\Delta G_{\text {ir }}^{\circ}$	$\Delta H_{\text {tr }}^{\circ}$	$\Delta S_{\text {Ir }}^{\circ}$			
N, N-Dimethylaniline	$0.82{ }^{\text {y }}$		-3.87	-11.56	-4.69			2.53	4.754	2.22
Pyridine	$-0.42^{\text {aq }}$	$-11.93{ }^{j}$	-1.48	-7.80	-1.06	4.13	17.4	3.44	3.003	-0.44
2-Methylpyridine	$-0.35^{a q}$	-13.18^{j}	-2.07	-8.58	- 1.72	4.60	21.2	3.39	3.437	0.05
3-Methylpyridine	$-0.50{ }^{\text {aq }}$	-13.08^{j}	-2.30	-8.96	-1.80	4.12	19.9	3.50	3.603	0.10
4-Methylpyridine	$-0.66^{a q}$	-13.15^{j}	-2.28	-8.79	-1.62	4.36	20.1	3.61	3.593	-0.02
2-Ethylpyridine	$-0.05{ }^{\text {aq }}$	$-13.31^{a q}$	-2.70		-2.65			3.17	3.90	0.73
3-Ethylpyridine	$-0.33^{a q}$	$-12.78^{a q}$	-3.01		-2.68			3.37	4.13	0.76
4-Ethylpyridine	$-0.46^{a q}$	$-12.48^{a q}$	-3.03		-2.57			3.47	4.14	0.67
2,3-Dimethylpyridine	$-0.55^{a q}$	$-13.79^{\text {aq }}$						3.53		
2,4-Dimethylpyridine	$-0.59^{a q}$	-14.51^{j}	-2.91		-2.32			3.56	4.05	0.49
2,5-Dimethylpyridine	$-0.44^{a q}$	-14.54^{j}	-2.91		-2.47			3.45	4.05	0.60
2,6-Dimethylpyridine	$-0.32^{a q}$	-14.81^{j}	-2.65		-2.33			3.37	3.86	0.49
3,4-Dimethylpyridine	$-0.94^{a q}$	$-13.54^{a q}$	-3.33		-2.35			3.82	4.36	0.54
3,5-Dimethylpyridine	$-0.56^{a q}$	-14.46^{j}	-3.18		-2.62			3.54	4.25	0.71
4-t-Butylpyridine	-0.19^{j}	$-13.83{ }^{j}$	-3.86		-3.67			3.27	4.75	1.48
Nitromethane	$0.25{ }^{\text {ar }}$	$-8.54{ }^{j}$	0.04	-6.06	-0.21	2.48	9.0	2.95	1.892	-1.06
Nitroethane	$0.56{ }^{\text {x }}$		-0.61		-1.17			2.72	2.367	-0.35
1-Nitropropane	$0.93{ }^{\text {x }}$		-1.27		-2.20			2.45	2.85	0.40
1-Nitrobutane	1.18		-1.92		-3.10			2.27	3.33	1.06
1-Nitropentane	$1.45{ }^{\text {w }}$		-2.59		-4.04			2.07	3.82	1.75
2-Nitropropane	1.14		-0.86		-2.00			2.30	2.550	0.25
Nitrobenzene	$0.15{ }^{x}$	-11.60^{\prime}	-3.46	-10.91	-3.61	0.69	14.4	3.02	4.460	1.44
2-Nitrotoluene	$0.68{ }^{\text {x }}$		-3.90		-4.58			2.63	4.78	2.15
3-Nitrotoluene	0.82		-4.16		-4.98			2.53	4.97	2.44
4-Nitrotoluene			-4.23						5.02	
Acetonitrile	$0.38{ }^{\text {x }}$	$-8.37^{\text {t }}$	0.49	-4.56	0.11	3.81	12.4	2.85	1.560	-1.29
Propanonitrile	$0.43{ }^{x}$	$-9.48{ }^{j}$	-0.18		-0.61			2.82	2.050	-0.77
Butanonitrile	$0.63{ }^{\text {x }}$	-10.15^{t}	-0.85		-1.48			2.67	2.540	-0.13
Pentanonitrile	0.75 *		-1.55		-2.30			2.58	3.057	0.48
Benzonitrile	$0.16{ }^{\text {y }}$	$-11.59^{\text {t }}$	-2.84	-9.86	-3.00	1.73	15.9	3.01	4.004	0.99
Chloromethane	3.72	$-5.53{ }^{\text {as }}$	1.03		-2.69			0.40	1.163	0.76
Chloroethane	3.64		0.33		-3.31			0.46	1.678	1.22
1-Chloropropane	3.94		-0.38		-4.32			0.24	2.202	1.96
1-Chlorobutane	4.11	$-6.92{ }^{\text {at }}$	-1.09	-7.38	-5.20	-0.46	15.9	0.12	2.722	2.60
1-Chloropentane	4.21	$-9.39^{\text {at }}$	-1.78		-5.99			0.05	3.223	3.17
1-Chlorohexane	4.27	$-8.86{ }^{\text {at }}$	-2.44		-6.71			0.00	3.71	3.71
1-Chloroheptane	4.56		-3.12		-7.68			-0.21	4.21	4.42
2-Chloropropane	$4.03{ }^{x}$		-0.07		-4.10			0.18	1.970	1.79
2-Chlorobutane	$4.27{ }^{\text {at }}$	$-8.94{ }^{\text {at }}$						0.00		
1-Chloro-2-methylpropane			-0.88						2.566	
2-Chloro-2-methylpropane	$5.36{ }^{\text {au }}$	$-4.88{ }^{\text {au }}$	-0.41		-5.77			-0.80	2.217	3.02
2-Chloropentane	$4.34{ }^{\text {x }}$							-0.05		
3-Chloropentane	$4.31{ }^{x}$							-0.03		
Dichloromethane	$2.96{ }^{k, x, a t}$	$-7.24{ }^{\text {av }}$	-0.14	-5.54	-3.10	1.70	16.1	0.96	2.019	1.06
Trichloromethane	$3.20{ }^{k, x, a t}$	$-7.99^{\text {f }}$	-0.76	-6.71	-3.96	1.28	17.6	0.79	2.480	1.69
Tetrachloromethane	$4.35{ }^{\text {at }}$	$-8.77^{\text {av }}$	-1.23	-7.39	-5.58	1.38	23.3	-0.06	2.823	2.88
1,2-Dichloroethane	$2.48{ }^{\text {ataw }}$	$-8.54{ }^{a v}$	-0.89		-3.37			1.31	2.573	1.26
1,1-Dichloroethane	$3.42^{\text {k,x,aw }}$		-0.59		-4.01			0.62	2.350	1.73
1,1,1-Trichloroethane	$4.08^{x, a t, a w}$		-1.05		-5.20			0.14	2.690	2.55
1,1,2-Trichloroethane	$2.28{ }^{x, a t}$		-1.87		-4.15			1.46	3.29	1.83
1,1,2,2-Tetrachloroethane	$1.80{ }^{\text {at,aw }}$		-2.60		-4.48			1.81	3.826	2.02
1,1,1,2-Tetrachloroethane	2.99 ${ }^{\text {k }}$		-2.22		-5.21			0.94	3.55	2.61
Pentachloroethane	$2.88{ }^{k, x}$							1.02		
Hexachloroethane	2.87^{x}									
	$3.89{ }^{\text {k }}$									
1,2-Dichloropropane	$3.01{ }^{\text {x,at }}$	$-8.61{ }^{\text {at }}$	-1.27		-4.28			0.93	2.85	1.92
1,3-Dichloropropane	$2.38{ }^{x, a t}$	$-7.78{ }^{\text {at }}$	-1.74		-4.12			1.39	3.194	1.80
1,4-Dichlorobutane	$1.95{ }^{\text {at }}$	$-6.22^{\text {at }}$	-2.53		-4.48			1.70	3.775	2.08
Bromomethane	3.46	$-6.10^{\text {as }}$						0.60		
Bromoethane	3.54		-0.14		-3.68			0.54	2.020	1.48
1-Bromopropane	3.71		-0.95		-4.66			0.41	2.620	2.21
1-Bromobutane	3.87		-1.62		-5.49			0.29	3.105	2.82
1-Bromopentane	4.18		-2.31		-6.49			0.07	3.611	3.54
1-Bromohexane	4.45		-3.01		-7.46			-0.13	4.13	4.26
1-Bromoheptane	4.61		-3.66		-8.27			-0.25	4.60	4.85
1-Bromo-octane	4.79		-4.32		-9.11			-0.38	5.09	5.47
2-Bromopropane	$3.79{ }^{x}$		-0.64		-4.43			0.35	2.391	2.04
2-Bromobutane			-1.38						2.933	
1-Bromo-2-methylpropane	$4.24{ }^{x}$		-1.42		-5.66			0.02	2.961	2.94

Table 1 (continued)

${ }^{a}$ Values of $\Delta G_{\mathrm{s}}^{\circ}$ and $\Delta H_{\mathrm{s}}^{\circ}$, in $\mathrm{kcal} \mathrm{mol}^{-1}$ mole fraction scale, for gaseous solutes taken from refs. 8 and 9 unless shown otherwise. ${ }^{b}$ This work, or from ref. 4, unless shown otherwise. ${ }^{c}$ M. H. Abraham and E. Matteoli, unpublished survey. ${ }^{d}$ S. F. Dec and S. J. Gill, J. Solution Chem., 1984, 13, 27. ${ }^{e}$ Note that van't Hoff enthalpies from A. Kuantes and G. W. A. Rijinders in 'Gas Chromatography 1958,' ed. D. H. Desty, Butterworths, London, 1958, are -5.95 and -6.87 , respectively. ${ }^{f}$ From data given by M. H. Abraham, P. L. Grellier, and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, 1987, 797. ${ }^{g}$ Value for solution in dodecane by the van't Hoff method. Data from A. Sahgad, H. M. La, and W. Hayduk, Can. J. Chem. Eng., 1978, 56, 354. ${ }^{h}$ By the van't Hoff method, P. J. Lin and J. F. Parcher, J. Chromatogr. Sci., 1982, 20, 33. 'By the van't Hoff method, data from Y. Migano and W. Hayduk, Can. J. Chem. Eng., 1981, 59, 746. ${ }^{j}$ Ref. 7. ${ }^{k}$ Ref. 10. ${ }^{\text {' G. L. Amidon and S. T. Anik, J. Chem. Eng. Data, 1981, }}$ 26, 28. ${ }^{m}$ J. W. Owens, S. P. Wasik, and H. De Voe, J. Chem. Eng. Data, 1986, 31, 47. ${ }^{n}$ I. Sanemasa, M. Araki, T. Deguchi, and H. Nagai, Bull. Chem. Soc. Jpn., 1982, 55, 1054. ${ }^{\circ}$ R. D. Wauchope and R. Haque, Can. J. Chem., 1972, 50, 133. ${ }^{p}$ Data from ref. 8 slightly adjusted using more recent ΔH_{v}° values from V. Majer and V. Svoboda, 'Enthalpies of Vaporization of Organic Compounds,' Blackwell, Oxford, 1985. ${ }^{9}$ Estimated

Table 1 (continued)

value, this work. 'Estimated value by J. P. Guthrie and P. A. Cullimore, Can. J. Chem., 1979, 57, 240. ${ }^{5}$ K. R. Brower, J. Peslak, and J. Elrod, J.
 L. C. Ling, and D. G. Guadagni, J. Agric. Food Chem., 1969, 17, 385. These values are for the unhydrated aldehydes; see ref. in footnote u. "'J. E. Amoure and R. G. Buttery, Chem. Senses Flavour, 1978, 3, 57. ${ }^{x}$ Ref. 6. ${ }^{y}$ From liquid solubilities and vapour pressures as calculated in this work. ${ }^{2}$ Isobutyl is 2-methylpropyl; isoamyl is 3-methylbutyl; isobutyrate is 2-methylpropanoate. ${ }^{a a}$ Calculated from vapour-liquid equilibria. ${ }^{a b}$ Enthalpy of solution of the pure liquid from B. C. Cox, A. J. Parker, and W. E. Waghorne, J. Am. Chem. Soc., 1973, 95, 1010. ac Parameters for the vaporisation of pure water. ${ }^{\text {ad }}$ Value from ref. 2. Other values that may be calculated are 2.17 from S. D. Christian, R. French, and K. O. Yeo, J. Phys. Chem., 1973, 74, 813, and 2.27 from P. Schatzberg, J. Phys. Chem., 1963, 67, 776. ${ }^{\text {ae }}$ H. Saito and K. Shinoda, J. Colloid Interfac. Chem., 1970, 32, $647 .{ }^{a f}$ J. H. Rytting, L. P. Huston, and T. Higuchi, J. Pharm. Sci., 1978, 67, 615. ${ }^{a g}$ K. Bocek, J. Chromatogr., 1979, 162, 209. ah M. F. Abd-El-Bary, M. F. Hamoda, S. Tanisho, and N. Wakao, J. Chem. Eng. Data, 1986, 31, 229. ${ }^{\text {ai }}$ G. H. Parsons, C. H. Rochester, and C. E. Wood, J. Chem. Soc., Perkin Trans. 2, 1972, 136. ${ }^{a j}$ Calculated from the known partition coefficient and $\log L_{\mathrm{H}}$ values. ${ }^{a k} \mathrm{~K}$. Schoene and J. Steinhanses, Fresenius Z. Anal. Chem., 1985, 321, 538. The ΔH° value is by the van't Hoff method. ${ }^{a l}$ J. A. V. Butler and C. N. Ramchandani, J. Chem. Soc., 1935, $952{ }^{a m}$ average of values from ref. in footnote $w(-1.88)$ and calculated from partition coefficients of R. Aveyard and R. W. Mitchell, Trans. Faraday Soc., 1970, 66, 37, corrected in this work for dimerization in hexadecane (-1.92). ${ }^{a n}$ From partition coefficients, see ref. in footnote $a m .{ }^{a}$ E. M. Arnett and F. M. Jones, Prog. Phys. Org. Chem., 1974, 11, 263. ${ }^{a p}$ M. H. Abraham and A. Nasehzadeh, J. Chem. Thermodyn., 1981, 13, 549. ${ }^{a q}$ R. J. L. Andon, J. D. Cox, and E. F. G. Herington, J. Chem. Soc., 1954, 3118. ${ }^{\text {ar }}$ J. H. Park, A. Hussam, P. Couasnon, D. Fritz, and P. W. Carr, Anal. Chem., 1987, 59, 1970. ${ }^{\text {as }}$ E. Wilhelm, R. Battino, and R. J. Wilcock, Chem. Rev., 1977, 77, 219. ${ }^{\text {at }}$ D. L. Leighton and J. M. Cole, J. Chem. Eng. Data, 1981, 26, 382. ${ }^{\text {au }}$ M. H. Abraham, P. L. Grellier, A. Nasehzadeh, and R. A. C. Walker, J. Chem. Soc., Perkin Trans. 2, 1988, 1717. ${ }^{a v}$ From ΔH_{s}° (liq) by J. W. Larsen and L. Magid, J. Phys. Chem., 1974, 78, 834, and R. de Lisi, M. Goffredi, and V. T. Liveri, J. Chem. Soc., Faraday Trans. 1, 1980, 1660, together with $\Delta H_{v}^{\circ}{ }^{\text {aw }}$ R. S. Barr and D. M. T. Newshan, Fluid Phase Eq., 1987, 35, 189. ${ }^{a x}$ M. H. Abraham, M. J. Kamlet, R. W. Taft, R. M. Doherty, and P. K. Weathersby, J. Med. Chem., 1985, 28, 865. ${ }^{\text {ay }}$ This is $\Delta H_{\mathrm{s}}^{\circ}$ (liq) from R. Ohnishi and K. Tanabe, Bull. Chem. Soc. Jpn., 1971, 44, 2647, by the van't Hoff method. Our own listed value for ΔH_{s}° in hexadecane is also for the liquid solute. ${ }^{a z}$ P. Bernal, S. D. Christian, and E. E. Tucker, J. Solution Chem., 1986, 15, 947. ${ }^{\text {ba }}$ A. Przyjazny, W. Janicki, W. Chrzanowski, and R. Staszewski, J. Chromatogr., 1983, 280, 249.
ception of methanol (3A), nitromethane (3A), and water. $\Delta H_{\mathrm{s}}^{\circ}$ values were independent of concentration in the measurement range.

Discussion

Most of the gas solubility data in water were taken from key references, ${ }^{6-8}$ two of which ${ }^{7,8}$ include values for the enthalpy of solution in water. The L_{H} values used were mostly those we have determined either previously ${ }^{4}$ or in this work, but we also calculated a number of values using literature data for closely related solvents such as squalane, ${ }^{15-17} \mathrm{C}_{87} \mathrm{H}_{176},{ }^{18,19}$ octacosane, ${ }^{20}$ and heptadecane. ${ }^{21}$ In Table 1 are collected values of log L_{W} and $\log L_{\mathrm{H}}$, together with the calculated $\log P_{\mathrm{H}}$ values, via equation (1). The $\log P_{\mathrm{H}}$ values all refer to the molar concentration scale, as is usual for partition coefficients. We have, where necessary, recalculated gas solubilities using standard states of 1 atm (gas) and unit mole fraction (solution), so that the $\Delta G_{\mathrm{tr}}^{\circ}$ values in Table 1 refer to the mole fraction concentration scale, a more appropriate scale when calorimetrically determined enthalpies of solution are involved. Our enthalpies of solution of liquid solutes were converted into $\Delta H_{\mathrm{s}}^{\circ}$ values for gaseous solutes, using enthalpies of vaporization at 298 K , care being taken to ensure that the same $\Delta H_{\mathrm{v}}^{\circ}$ values were used for solution into water and hexadecane. The observed $\Delta H_{\mathrm{s}}^{\circ}$ values, and the deduced $\Delta H_{\mathrm{tr}}^{\circ}$ and $\Delta S_{\mathrm{tr}}^{\circ}$ are collected in Table 1. Additional $\log P_{\mathbf{H}}$ values are given in Table 2.

The expected error in the $\log L_{\mathrm{H}}$ values is very small, probably no more than $0.03 \log$ unit, However, there are substantial differences in recorded values for $\log L_{\mathrm{W}}$, even for moderately volatile solutes. Thus for halogenated alkanes, the $\log L_{\mathrm{w}}$ values given by Hine and Mookerjee ${ }^{6}$ and by Mackay and Shiu ${ }^{10}$ differ randomly by ca. $0.1 \log$ unit, and for hexachloroethane the two recorded values differ by a full \log unit (2.87 and 3.89 , respectively). Enthalpies of solution, although in the best instances* capable of leading to $\Delta H_{\mathrm{ir}}^{\circ}$ values with an error of only some $0.05 \mathrm{kcal} \mathrm{mol}^{-1}$, can also be subject to very large errors.

[^1]We can suggest that the expected error in $\Delta G_{\text {ir }}^{\circ}$ will be $c a .0 .2$ $\mathrm{kcal} \mathrm{mol}^{-1}$, that in $\Delta H_{\mathrm{tr}}^{\circ}$ around $0.5 \mathrm{kcal} \mathrm{mol}^{-1}$, and that in $\Delta S_{\mathrm{tr}}^{\circ}$ $c a .2 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. However, occasionally much larger experimental errors may arise, and this should be borne in mind when results are discussed. We note that the thermodynamics of transfer from water to hexadecane are very similar to those for transfer to 2,2,4-trimethylpentane, as found by Tomlinson et $a l .{ }^{12} \mathrm{~A}$ comparison for a number of solutes is in Table 3. Within any reasonable error, it seems as though $\Delta H_{\mathrm{tr}}^{\circ}$ values are identical for the two transfers, and that $\Delta G_{\mathrm{tr}}^{\circ}$ values average at about the same, with rather more random variation. It seems that without introducing too much error, values of $\Delta H_{\mathrm{tr}}^{\circ}$ and $\Delta G_{\text {tr }}^{\circ}$ for transfer to $2,2,4$-trimethylpentane, Table 3, could be taken as those for transfer to hexadecane.

Tomlinson et al. ${ }^{12}$ examined the possibility of enthalpyentropy correlations for transfer to 2,2,4-trimethylpentane through the statistically correct method of plotting $\Delta G_{\mathrm{tr}}^{\circ} v s$. $\Delta H_{\mathrm{tr}}^{\circ}$. They found that there was no general correlation between $\Delta G_{\mathrm{tr}}^{\circ}$ and $\Delta H_{\mathrm{tr}}^{\circ}$, although linear relationships were observed for various homologous series. Using a more extended data set, we can confirm the findings of Tomlinson et al. ${ }^{12}$ Aliphatic series such as the alkanes, ketones, and alcohols form separate linear plots. However, aromatic or halogeno-substituted compounds always lie off the plots for the unsubstituted series. This rather complicated enthalpy-Gibbs energy interplay is hardly surprising in view of the varied solute-solvent interactions that are possible.

One method for the examination of solute-solvent interactions is that of multiple linear regression analysis, especially as developed by Abraham, Doherty, Kamlet, Taft, and their coworkers. ${ }^{22-25}$ The solubility of a gaseous solute in a solvent is regarded as being made up of an endoergic cavity term, that arises through breaking of solvent-solvent interactions, together with a number of exoergic terms that arise through different solute-solvent interactions. For a number of solutes in a given solvent phase, equations (2) and (3) are valid. ${ }^{22-25}$

$$
\begin{equation*}
\mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}+b \beta_{2}+v V_{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a \alpha_{2}+b \beta_{2}+l \log L_{\mathrm{H}} \tag{3}
\end{equation*}
$$

Equation (2) is recommended for processes within condensed phases, such as the water-hexadecane partition coefficients we

Table 2. Directly determined $\log P_{\mathrm{H}}$ values for compounds not in Table 1. ${ }^{\text {a }}$

Solute	$\Delta G_{\mathrm{t}}^{\circ} / \mathrm{kcal} \mathrm{mol}^{-1}$	$\log P_{\mathrm{H}}$	Ref.
Butane-1,4-diol	4.30	-4.37	2
Hexane-1,6-diol	2.80	-3.27	2
Formamide	5.31	-5.10	2
Acetamide	4.73	-4.68	2
Butyramide	3.05	-3.44	2
Isobutyramide	3.03	-3.43	2
Urea	5.79	-5.46	2
4-Pentylpyridine	-5.26	2.64	b
4-Hexylpyridine	-6.12	3.27	b
4-Heptylpyridine	-7.00	3.92	b
4-Octylypridine	-7.89	4.57	b
4-Nonylpyridine	-8.76	5.21	b
4-Decylpyridine	-9.62	5.84	b
Paraldehyde	-1.98	0.24	3
2-Chlorophenol	$(-1.52)-1.45$	-0.15	c
4-Chlorophenol	$(-0.70)-0.63$	-0.75	c
4-Chloro-3-methylphenol	(-2.14)	-2.07	0.31
c			
2-Iodophenol	(-2.28)	-2.21	0.41
c			
o-Toluidine	-2.17	0.38	d
p-Toluidine	-2.14	0.36	d
2-Methoxyaniline	-2.10	0.33	d
4-Methoxyaniline	-0.92	-0.54	d
2-Chloroaniline	-3.11	1.07	d
3-Chloroaniline	-2.53	0.64	d
4-Chloroaniline	-2.42	0.56	d
2-Nitroaniline	-1.95	0.22	e
Acetophenone	-3.18	1.12^{g}	f
4-Methoxyacetophenone	-2.88	0.90	f
3-Methylacetophenone	-4.00	1.72	f
4-Methylacetophenone	-3.88	1.63	f
4-Fluoroacetophenone	-3.29	1.20	f
3-Chloroacetophenone	-4.40	2.01	f
4-Chloroacetophenone	-3.89	1.85	f
3-Trifluoromethylacetophenone	-4.49	2.08	f
3-Nitroacetophenone	-2.38	0.53	f
4-Nitroacetophenone	-2.59	0.69	f
Biphenyl	-7.37	4.19	5

${ }^{a}$ Values of $\log P_{\mathbf{H}}$ on the molar scale and $\Delta G_{\mathrm{tr}}^{\circ}$ on the mol fraction scale as in Table 1. ${ }^{b}$ K. C. Yeh and W. I. Higuchi, J. Pharm. Sci., 1976, 65, 82. ${ }^{\text {c }}$ Parenthesised values are for transfer to dodecane, from D. E. Burton, K. Clarke, and G. W. Gray, J. Chem. Soc., 1964, 1314. The listed values for $\Delta G_{\mathrm{rr}}^{\circ}$ and $\log P$ have been slightly adjusted to correspond to transfer to hexadecane, by comparison for phenols for which both transfers are known. ${ }^{d}$ W. Kemula, H. Buchowski, and W. Pawlowski, Rocz. Chem., 1968, 48, 1951. ${ }^{e}$ W. Kemula, H. Buchowski, and J. Terepat, Bull. Acad. Sci. Polon., 1961, 9, 595. ${ }^{\text { }}$ Values for transfer to dodecane, from J. Toullec, M. El-Alaoui, and P. Kleffert, J. Org. Chem., 48, 4808. ${ }^{9}$ Note the same value (Table 1) for transfer to hexadecane.
wish to analyse. We shall therefore consider only equation (2) and not equation (3), preferred for gas-solvent partition coefficients. In equation (2), δ_{2} is a solute polarisability correction term taken as zero except for polyhalogeno aliphatics (0.5) and aromatics (1.0), π_{2}^{*} is the solute dipolarity, α_{2} the solute hydrogen-bond acidity, β_{2} the solute hydrogen-bond basicity, and V_{2} is the solute volume. The constants c, d, s, a, b, and v are found by multiple linear regression analysis, and can be used to deduce the factors that are important in the particular process. If we consider specifically the water-hexadecane partition, with $\mathrm{SP}=\log P_{\mathrm{H}}$ as defined via equation (1), then the values of the s-constant will depend on the differences in dipolarity between water and hexadecane; a negative s-constant will indicate that water is more dipolar than hexadecane and hence more able to undergo solvent-solute dipole-dipole interactions. In a similar vein, the a-constant will reflect the hydrogen-bond basicity of water, that is its ability to hydrogen bond with solutes that
are hydrogen-bond acids (hexadecane cannot), whilst the b constant will reflect the hydrogen-bond acidity of water. The $v V_{2}$ term covers cavity effects, the larger the solute the more solvent-solvent interactions must be broken to make a suitably sized cavity. Hence the v-constant should provide an assessment of the difference in cavity effects between water and hexadecane.

In equation (2), the solute explanatory variables were taken as follows: δ_{2} defined as above; π_{2}^{*} as listed before; ${ }^{22-25} x_{2}$ as x_{2}^{H}, the new solute hydrogen-bond acidity parameter; ${ }^{26} \beta_{2}$ as β_{2}^{H}, the new solute hydrogen-bond basicity parameter, ${ }^{27.28}$ supplemented by a few recently determined ${ }^{29}$ 'effective' or 'summation' β_{2}^{H} values for multifunctional bases; V_{2} as McGowan's intrinsic volume $V_{x}{ }^{30}$ The equation that we use to correlate log P_{H} and also the thermodynamic functions of transfer is therefore as follows, where V_{x} is in units of $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) / 100$.

$$
\begin{equation*}
\mathrm{SP}=c+d \delta_{2}+s \pi_{2}^{*}+a x_{2}^{\mathrm{H}}+b \beta_{2}^{\mathrm{H}}+v V_{x} \tag{4}
\end{equation*}
$$

If we include all of the data of Tomlinson et al. ${ }^{12}$ in Table 3, as well as our calculated values in Tables 1 and 2, we have 270 compounds for which we have all the required explanatory variables. Details of the regression equations are in Table 4, where n is the number of solutes, r the overall correlation coefficient, and sd the standard deviation. Bearing in mind the probable average experimental error in $\log P_{\mathrm{H}}$ of about 0.1 , and also the experimental errors in the various explanatory variables, an overall standard deviation of $c a .0 .2 \log$ units is as good as can be expected. Thus the regression equation for 270 compounds, with $r=0.9884$ and sd $=0.28$, is quite acceptable. The constants in equation (4) are all chemically reasonable, with s, a, and b all being very negative, and v being very positive. Thus solute dipolarity, hydrogen-bond acidity, and hydrogen-bond basicity, all lead to a preference for water, whereas solute volume leads to a preference for hexadecane. As mentioned in the introduction, we were interested in results for aliphatic compounds and aromatic compounds taken separately; details of the found regressions are also in Table 4. A comparison of the 'aliphatics only' with the 'aromatics only' regression does suggest that there are small, but possibly significant differences, with the constants a, b, and v all being numerically smaller for the aromatic regression. Interestingly, Kamlet and coworkers ${ }^{31,32}$ found that for aqueous solubility of liquids and solids, different regression equations were required for aliphatic and aromatic compounds, ${ }^{31}$ but for water-octanol partition coefficients $\left(\log P_{\mathrm{OCT}}\right)^{32}$ the same regression equation could accommodate both types of solutes [equation (5)].

$$
\begin{align*}
& \log P_{\mathrm{oCT}}=0.35+0.36 \delta_{2}-1.04 \pi_{2}^{*}+ \\
& 0.10 \alpha_{\mathrm{m}}-3.84 \beta_{\mathrm{m}}+5.35 V_{1} \tag{5}
\end{align*}
$$

Because equation (5) is cast in terms of α_{m} and β_{m} (related to x_{2}^{H} and β_{2}^{H} but not entirely equivalent) and also of Leahy's intrinsic volume, $V_{1},{ }^{33}$ we felt it useful to examine $\log P_{\text {oct }}$ for the set of solutes assembled in Tables $1-3$ using equation (4). The results are in Table 5. The v-constant in Table 5 is much smaller than in equation (5), but this is to be expected since V_{x} / V_{i} is only ca. $0.68{ }^{30}$ The other constants in Table 5 are all reasonably consistent with those in equation (5), and, as found by Kamlet and co-workers, ${ }^{32}$ there is little difference between aliphatic and aromatic solutes.

It is instructive to compare the constants in equation (4) for water-hexadecane with water-octanol, for the 'all solutes' correlations:

	c	d	s	a	b	v
water-hexadecane	0.26	0.51	-1.45	-3.92	-5.21	4.32
water-octanol	0.20	0.49	-1.24	-0.28	-3.32	3.85

Table 3. Comparison of thermodynamics of transfer from water to hexadecane and to 2,2,4-trimethylpentane, molar scale at 298 K .

Solute	Hexadecane ${ }^{\text {a }}$			2,2,4-Trimethylpentane ${ }^{11.12}$		
	$\Delta G_{\text {tr }}^{\circ}$	$\Delta H_{\text {tr }}^{\circ}$	$\Delta S_{\text {tr }}^{\circ}$	$\Delta G_{\text {tr }}^{\circ}$	$\Delta H_{\text {tr }}^{\circ}$	$\Delta S_{\text {tr }}^{\circ}$
Butanone	0.59	4.58	13	0.25	4.54	14
Ethanol	2.99	8.68	19	2.72	8.36	19
Hexan-1-ol	-0.52	6.77	24	-0.74	6.57	24
Aniline	0.05	2.88	9	0.28	3.25	10
Nitrobenzene	-1.96	0.69	9	-1.95	0.67	9
Methyl benzoate	-2.03	0.88	10	-2.49	0.82	11
Phenol	1.01			1.31	4.64	11
p-Cresol	0.26			0.54	4.51	13
4-Chlorophenol	1.02			0.66	4.11	12
3-Methoxyphenol				1.48	4.46	10
4-Methylaniline				-0.46	3.53	13
4-Chloroaniline				-0.65	2.46	10
N-Methylaniline				-1.41	2.52	13
Methyl phenyl sulphone				1.25	3.21	7
Methyl phenyl sulphoxide				2.03	5.60	12
Ethyl benzoate				-2.76	0.74	12
Benzyl alcohol	0.29	5.87	19	1.04	6.15	17
2-Phenylethanol				0.49	6.03	19
3-Phenylpropan-1-ol				-0.25	6.41	22
Acetophenone	-1.53	1.32	10	-1.52	2.11	12
Benzaldehyde	-1.41	0.95	8	-1.43	0.99	8
Anisole	-2.90	0.00	10	-2.76	0.00	9
Pyridine	0.60	4.13	12	0.56	4.08	12

${ }^{a}$ From Tables 1 and 2, after conversion into the molar scale.

Table 4. Regression analysis of water-hexadecane partition coefficients, using equation (4). ${ }^{a}$

Solute set	c	d	s	a	b	v	r	s
All solutes	0.26 ± 0.06	0.51 ± 0.05	-1.45 ± 0.09	-3.92 ± 0.11	-5.21 ± 0.09	4.32 ± 0.06	270	0.9884
Aliphatics only	0.27 ± 0.07	0.48 ± 0.17	-1.45 ± 0.10	-4.11 ± 0.14	-5.39 ± 0.13	4.39 ± 0.07	203	0.9890
Aromatics only	0.94 ± 0.19	-	-1.31 ± 0.17	-3.65 ± 0.13	-4.74 ± 0.17	3.85 ± 0.16	67	0.9913

${ }^{a}$ Compounds listed in Tables $1-3$, with $\log P_{\mathrm{H}}$ on the molar scale.

Table 5. Regression analysis of water-octanol partition coefficients, ${ }^{a}$ using equation (4).

Solute set	c	d	s	a	b	v	n	s	r
All solutes	0.20 ± 0.06	0.49 ± 0.04	-1.24 ± 0.08	-0.28 ± 0.08	-3.32 ± 0.08	3.85 ± 0.06	307	0.9790	0.26
Aliphatic only	0.28 ± 0.06	0.24 ± 0.15	-1.28 ± 0.09	-0.48 ± 0.13	-3.42 ± 0.11	3.84 ± 0.06	215	0.9740	0.27
Aromatic only	0.53 ± 0.17	-	-0.91 ± 0.15	-0.17 ± 0.09	-3.30 ± 0.14	3.74 ± 0.14	92	0.9782	0.22

${ }^{a}$ Compounds listed in Tables $1-3$, with $\log P_{\text {OCT }}$ on the molar scale.

The most striking features of the two sets of constants are (i) the dipolarity of wet octanol is surprisingly small, with s (octanol) almost as negative as s (hexadecane); (ii) the basicity of wet octanol must be almost the same as that of water, since a (octanol) is only -0.28 as compared with a (hexadecane) of -3.92; (iii) the hydrogen-bond acidity of wet octanol is appreciably less than that of water: $c f . b$ (hexadecane) $=-5.21$, b (octanol) $=-3.21$; and (iv) the cavity effect (or probably a combined cavity effect plus dispersion interactions) for wet octanol is not far away from that for hexadecane. Obviously, results on more water-solvent partitions are needed to quantify these effects, but already it can be seen that equation (4) will yield information about various solute-solvent interactions.

Having now to hand not only values of $\log P_{\mathrm{H}}$ (equivalent to $\Delta G_{\mathrm{tr}}^{\circ}$ on the molar scale) but also $\Delta H_{\mathrm{tr}}^{\circ}$, we can now set out $\Delta G_{\mathrm{tr}}^{\circ}$, $\Delta H_{\mathrm{ir}}^{\circ}$, and $\Delta S_{\mathrm{ir}}^{\circ}$ on the mole fraction scale, Table 1 , and regress a unified set of transfer parameters for the same solutes. We have 86 such solutes for which the required explanatory variables are
known, and summarise results of the regressions in Table 6. The constants in the $\Delta G_{\mathrm{ir}}^{\circ}$ regression (other than c) then yield the $\log P_{\mathrm{H}}$ constants on division by -1.364 ; there is reasonable agreement between the 86 solute correlation in Table 6 and the 270 solute correlation in Table 4. The sd values in Table 6 are roughly as expected for correlations of $\Delta H_{\mathrm{tr}}^{\circ}\left(\pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and $\Delta S_{\mathrm{tr}}^{\circ}\left(\pm 2 \mathrm{kcal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$, being $0.94 \mathrm{kcal} \mathrm{mol}^{-1}$ and 2.7 cal $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively.

There are a number of extraordinary features of the results given in Table 6; it is useful to take the main parameters in turn. The s-constants, viewed as dipolarity effects, are almost impossible to interpret. Whereas an increase in solute dipolarity $\left(\pi_{2}^{*}\right)$ reduces transfer to hexadecane in terms of $\Delta G_{\mathrm{tr}}^{\circ}$ or $\log P_{\mathrm{H}}$, it actually aids transfer in terms of $\Delta H_{\mathrm{ir}}^{\circ}$ One difficulty here is that the π_{2}^{*} parameter involves not only dipolarity, but also polarisability effects; furthermore, there is an interplay between δ_{2}, the polarisability correction term, and π_{2}^{*}. The solute hydrogen-bond acidity term, $a \alpha_{2}^{\mathrm{H}}$, can be plausibly interpreted

Table 6. Regression analysis of $\Delta G_{\mathrm{tr}}^{\circ}, \Delta H_{\mathrm{tr}}^{\circ}$, and $\Delta S_{\mathrm{tr}}^{\circ}$ for the water-hexadecane partition, mole fraction scale at $298 \mathrm{~K} .^{a}$

Parameter	c	d	s	a	b	v	n	r	sd
$\Delta G_{\text {it }}^{\circ}$	-1.90 ± 0.11	-0.69 ± 0.12	1.63 ± 0.23	5.44 ± 0.23	7.06 ± 0.25	-5.78 ± 0.15	86	0.9896	0.35
$\Delta H_{\text {ir }}^{\circ}$	2.81 ± 0.30	-1.73 ± 0.33	-2.08 ± 0.60	8.11 ± 0.62	10.05 ± 0.67	-2.43 ± 0.41	86	0.9451	0.94
$\Delta S_{\text {tr }}^{\circ}$	15.80 ± 0.88	-3.55 ± 0.95	-12.84 ± 1.74	9.23 ± 1.80	10.34 ± 1.95	11.28 ± 1.19	86	0.8766	2.73
$-T \Delta S_{\text {tr }}{ }^{\text {b }}$	-4.71	1.06	3.83	-2.75	-3.08	-3.36			

${ }^{a}$ Values from Tables 1 and $3, \Delta G_{\mathrm{tr}}^{\circ}$ and $\Delta H_{\mathrm{tr}}^{\circ}$ in $\mathrm{kcal} \mathrm{mol}^{-1} ; \Delta S_{\mathrm{rr}}^{\circ}$ in cal $\mathrm{K}^{-1} \mathrm{~mol}^{-1}{ }^{b}$ Calculated from the constants in the $\Delta S_{\mathrm{tr}}^{\circ}$ regression. The values do not quite yield the $\Delta H_{\mathrm{ir}}^{\circ}-\Delta G_{\mathrm{tr}}^{\circ}$ constants due to rounding-off errors.
as follows. Hydrogen-bonding from the solute acid to water base will be exothermic, and hence $\Delta H_{\mathrm{tr}}^{\circ}$ will be positive (as observed). But the creation of hydrogen bonds will be somewhat disfavoured in terms of entropy, leading to a positive $\Delta S_{\text {tr }}^{\circ}$ value and to a $\Delta G_{\mathrm{tr}}^{\circ}$ value that is still positive, but less so than $\Delta H_{\mathrm{tr}}^{\circ}$. An exactly similar argument can account for the positive b-constants in $\Delta G_{\mathrm{tr}}^{\circ}, \Delta H_{\mathrm{tr}}^{\circ}$, and $\Delta S_{\mathrm{tr}}^{\circ}$. The breakdown of the $v V_{x}$ 'cavity' term into enthalpic and entropic contributions is especially interesting in that any so-called 'hydrophobic effect' must reside in this $v V_{x}$ term. Now on the scaled particle theory (SPT), ${ }^{34}$ the free energy of cavity formation in water, $G_{\mathrm{cav}}^{\mathrm{W}}$, is much more positive than the corresponding value in a solvent such as hexadecane, $G_{\mathrm{cav}}^{\mathbf{H}}$. Hence $G_{\mathrm{cav}}^{\mathbf{H}}-G_{\mathrm{cav}}^{\mathbf{W}}$ is negative and will correspondingly contribute a negative quantity to $\Delta G_{\mathrm{tr}}^{\circ}$. But the enthalpy of cavity formation in water is smaller than in solvents such as hexadecane, so that $H_{\text {cav }}^{\mathrm{H}}-H_{\text {cav }}^{\mathrm{W}}$ is actually positive. ${ }^{35}$ We suggest that the $v V_{2}$ term in equation (2) and the $v V_{x}$ term in equation (4) include not only cavity effects, but general dispersion interactions as well. These will always be more exoergic and exothermic in hexadecane than in water (note that water has a particularly low refractive index and molar refraction). Hence a combination of an exoergic interaction transfer with an exoergic cavity transfer will lead to a very negative $v V_{x}$ term in $\Delta G_{\mathrm{tr}}^{\circ}$. But combination of an exothermic interaction transfer with an endothermic cavity transfer can result in a $v V_{x}$ term that is still negative, but not greatly so. This is exactly as observed, Table 6.

Our thermodynamic analysis thus reveals that the $s \pi_{2}^{*}$ term in equation (2) and equation (4) cannot easily be interpreted on its own, not even in conjunction with the correction term $d \delta_{2}$. The hydrogen-bond terms, however, seem to be quite straightforward, but the so-called cavity term $v V_{x}$ (or $v V_{2}$) must include not only cavity effects but also general dispersion interactions as well. Our analysis also shows that because of the rather complicated interplay of the coefficients in the Gibbs energy and enthalpy of transfer, no simple relationship between $\Delta G_{\mathrm{tr}}^{\circ}$ and $\Delta H_{\mathrm{tr}}^{\circ}$ across families of solutes is expected. This is in agreement with the findings of Tomlinson et al. ${ }^{12}$ and also our own observations.

Acknowledgements

The studies at the University of Houston were supported by the Welch Foundation, and those at University College London by the United States Army Research, Development and Standardisation Group. We thank Dr. Albert Leo for providing us with a number of water-octanol partition coefficients.

This paper is dedicated to the memory of Mortimer J. Kamlet.

References

1 C. Hansch and A. Leo, 'Substituent Constants for Correlation Analysis in Chemistry and Biology,' Wiley-Interscience, New York, 1974.

2 A. Finkelstein, J. Gen. Physiol., 1976, 68, 127.
3 N. P. Franks and W. R. Lieb, Nature (London), 1978, 274, 339.
4 M. H. Abraham, P. L. Grellier, and R. A. McGill, J. Chem. Soc., Perkin Trans. 2, 1987, 747.
5 M. M. Schantz and D. E. Martire, J. Chromatogr., 1987, 391, 35; M. M. Schantz and D. E. Martire, J. Res. Nat. Bur. Stand., Sect. A, 1988, 93, 161.
6 J. Hine and P. K. Mookerjee, J. Org. Chem., 1975, 40, 292.
7 S. Cabani, P. Gianni, V. Mollica, and L. Lepore, J. Solution Chem., 1981, 10, 563.
8 M. H. Abraham, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 153.
9 M. H. Abraham and E. Matteoli, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 1985.
10 D. Mackay and W. Y. Shiu, J. Phys. Chem. Ref. Data, 1981, 10, 1175; 1986, 15, 911.
11 W. Riebesehl and E. Tomlinson, J. Phys. Chem., 1984, 88, 4770.
12 W. Riebesehl, E. Tomlinson, and H. J. M. Grünbauer, J. Phys. Chem., 1984, 88, 4775.
13 R. Fuchs, M. H. Abraham, M. J. Kamlet, and R. W. Taft, J. Phys. Org. Chem., in the press.
14 R. Fuchs, E. J. Chambers, and W. K. Stephenson, Can. J. Chem., 1987, 65, 2624.
15 R. S. Siderov, A. A. Khvostikova, and G. I. Vakhursheva, J. Anal. Chem. USSR (Engl. Transl.), 1973, 28, 1420.
16 N. Dimov, J. Chromatogr., 1985, 347, 366.
17 L. Sojak, J. Rumen, and J. Janak, J. Chromatogr., 1987, 391, 79.
18 F. Riedo, D. Fritz, G. Tarjan, and E. Kovats, J. Chromatogr., 1976, 126, 63.
19 P. Laffort and F. Patte, J. Chromatogr., 1987, 406, 51.
20 U. Weldlich and J. Grehling, J. Chem. Eng. Data, 1987, 32, 138.
21 M. Laffosse and M. Dreux, J. Chromatogr., 1980, 193, 9.
22 M. J. Kamlet, R. M. Doherty, J.-L. M. Abboud, M. H. Abraham, and R. W. Taft, Chemtech., 1986, 16, 566.

23 M. H. Abraham, R. M. Doherty, M. J. Kamlet, and R. W. Taft, Chem. Br., 1986, 22, 551.
24 M. J. Kamlet, R. M. Doherty, M. H. Abraham, and R. W. Taft, Quant. Struct. Act. Relat., 1988, 7, 71.
25 M. H. Abraham, P. L. Grellier, I. Hamerton, R. A. McGill, D. V. Prior, and G. S. Whiting, Faraday Discuss. Chem. Soc., 1988, 85, 107.
26 M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris, and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1989, 699.
27 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris, P. J. Taylor, C. Laurence, and M. Berthelot, Tetrahedron Lett., 1989, 30, 9571.

28 M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris, and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, submitted for publication.
29 M. H. Abraham and G. S. Whiting, unpublished work.
30 M. H. Abraham and J. C. McGowan, Chromatographia, 1987, 23, 243.

31 M. J. Kamlet, R. M. Doherty, M. H. Abraham, P. W. Carr, R. F. Doherty, and R. W. Taft, J. Phys. Chem., 1987, 91, 1996.
32 M. J. Kamlet, R. M. Doherty, M. H. Abraham, Y. Marcus, and R. W. Taft, J. Phys. Chem., 1988, 92, 5244.
33 D. E. Leahy, J. Pharm. Sci., 1986, 75, 629.
34 R. A. Pierotti, Chem. Rev., 1976, 76, 717.
35 M. H. Abraham and A. Nasehzadeh, J. Chem. Soc., Faraday Trans. 1, 1981, 77, 321.

[^0]: \dagger Note that L_{H} is the same as $L,{ }^{16}$ the symbol we previously used. ${ }^{4}$

[^1]: * These are nearly always with calorimetrically determined enthalpies of solution of liquid solutes that dissolve readily in water and hexadecane and are not subject to extensive self-association. Note that any error in ΔH_{v}° cancels out. $1 \mathrm{kcal}=4.184 \mathrm{~kJ}$.

